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1. INTRODUCTION

Persistent key-value stores play a critical role in a variety of modern data-intensive
applications, including web indexing [Chang et al. 2006; Sanjay Ghemawat and Jeff
Dean 2011], e-commerce [DeCandia et al. 2007], data deduplication [Anand et al.
2010; Debnath et al. 2010], photo stores [Beaver et al. 2010], cloud data [Lai et al.
2015], social networking [Armstrong et al. 2013; Dong 2015; Sumbaly et al. 2012],
online gaming [Debnath et al. 2011], messaging [George 2011; Harter et al. 2014], and
online advertising [Cooper et al. 2008]. By enabling efficient insertions, point lookups,
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and range queries, key-value stores serve as the foundation for this growing group of
important applications.

For write-intensive workloads, key-value stores based on Log-Structured Merge-
Trees (LSM-trees) [ONeil et al. 1996] have become the state of the art. Various
distributed and local stores built on LSM-trees are widely deployed in large-scale
production environments, such as BigTable [Chang et al. 2006] and LevelDB [Sanjay
Ghemawat and Jeff Dean 2011] at Google; Cassandra [Lakshman and Malik 2009],
HBase [Harter et al. 2014], and RocksDB [Dong 2015] at Facebook; PNUTS [Cooper
et al. 2008] at Yahoo!; and Riak [Redmond 2013] at Basho. The main advantage of
LSM-trees over other indexing structures (such as B-trees) is that they maintain
sequential access patterns for writes [Athanassoulis et al. 2015]. Small updates
on B-trees may involve many random writes and are hence not efficient on either
solid-state storage devices or hard-disk drives.

To deliver high write performance, LSM-trees batch key-value pairs and write them
sequentially. Subsequently, to enable efficient lookups (for both individual keys and
range queries), LSM-trees continuously read, sort, and write key-value pairs in the
background, thus maintaining keys and values in sorted order. As a result, the same
data is read and written multiple times throughout its lifetime; as we show later
(Section 2), this I/O amplification in typical LSM-trees can reach a factor of 50× or
higher [Harter et al. 2014; Marmol et al. 2015; Wu et al. 2015].

The success of LSM-based technology is tied closely to its usage in classic hard-
disk drives (HDDs) [Arpaci-Dusseau and Arpaci-Dusseau 2014]. In HDDs, random
I/Os are over 100× slower than sequential ones [Arpaci-Dusseau and Arpaci-Dusseau
2014; ONeil et al. 1996]; thus, performing additional sequential reads and writes to
continually sort keys and enable efficient lookups represents an excellent tradeoff.

However, the storage landscape is quickly changing, and modern solid-state storage
devices (SSDs) are supplanting HDDs in many important use cases [Arpaci-Dusseau
and Arpaci-Dusseau 2014]. As compared to HDDs, SSDs are fundamentally different in
their performance and reliability characteristics; when considering key-value storage
system design, we believe the following three differences are of paramount importance.
First, the difference between random and sequential performance is not nearly as large
as with HDDs; thus, an LSM-tree that performs a large number of sequential I/Os to
reduce later random I/Os may be wasting bandwidth needlessly. Second, SSDs have
a large degree of internal parallelism; an LSM built atop an SSD must be carefully
designed to harness said parallelism [Wang et al. 2014]. Third, SSDs can wear out
through repeated writes [Lee et al. 2015; Min et al. 2012]; the high write amplification
in LSM-trees can significantly reduce device lifetime. As we will show in this article
(Section 4), the combination of these factors greatly impacts LSM-tree performance on
SSDs, reducing throughput by 90% and increasing write load by a factor over 10. While
replacing an HDD with an SSD underneath an LSM-tree does improve performance,
with current LSM-tree technology, the SSD’s true potential goes largely unrealized.

In this article, we present WiscKey, an SSD-conscious persistent key-value store de-
rived from the popular LSM-tree implementation, LevelDB. The central idea behind
WiscKey is the separation of keys and values [Nyberg et al. 1994]; only keys are kept
sorted in the LSM-tree, while values are stored separately in a log. In other words,
we decouple key sorting and garbage collection in WiscKey, whereas LevelDB bundles
them together. This simple technique can significantly reduce write amplification by
avoiding the unnecessary movement of values while sorting. Furthermore, the size of
the LSM-tree is noticeably decreased, leading to fewer device reads and better caching
during lookups. WiscKey retains the benefits of LSM-tree technology, including excel-
lent insert and lookup performance, but without excessive I/O amplification.

Separating keys from values introduces a number of challenges and optimization
opportunities. First, range query (scan) performance may be affected because values
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are not stored in sorted order anymore. WiscKey solves this challenge by using the
abundant internal parallelism of SSD devices. Second, WiscKey needs garbage col-
lection to reclaim the free space used by invalid values. WiscKey proposes an online
and lightweight garbage collector, which only involves sequential I/Os and impacts the
foreground workload minimally. Third, separating keys and values makes crash consis-
tency challenging; WiscKey leverages an interesting property in modern file systems,
whose appends never result in garbage data on a crash, to realize crash consistency cor-
rectly and efficiently. As a result, WiscKey delivers high performance while providing
the same consistency guarantees as found in modern LSM-based systems.

We compare the performance of WiscKey with LevelDB [Sanjay Ghemawat and
Jeff Dean 2011] and RocksDB [Dong 2015], two popular LSM-tree key-value stores.
For most workloads, WiscKey performs significantly better. With LevelDB’s own mi-
crobenchmark, WiscKey is 2.5× to 111× faster than LevelDB for loading a database
(with notably better tail latencies), depending on the size of the key-value pairs; for
random lookups, WiscKey is 1.6× to 14× faster than LevelDB. WiscKey’s performance
is not always better than standard LSM-trees; if small values are written in random
order and a large dataset is range-queried sequentially, WiscKey performs worse than
LevelDB. However, this workload does not reflect real-world use cases (which primarily
use shorter range queries) and can be improved by log reorganization. Under YCSB
macrobenchmarks [Cooper et al. 2010] that reflect real-world use cases, WiscKey is
faster than both LevelDB and RocksDB in all six YCSB workloads, and follows a trend
similar to the load and random lookup microbenchmarks.

The rest of the article is organized as follows. We first describe background and
motivation (Section 2). We then explain the design of WiscKey (Section 3) and analyze
its performance (Section 4). We next describe related work (Section 5) and finally
conclude (Section 6).

2. BACKGROUND AND MOTIVATION

In this section, we first describe the concept of a Log-Structured Merge-tree (LSM-
tree). Then, we explain the design of LevelDB, a popular key-value store based on
LSM-tree technology. We investigate read and write amplification in LevelDB. Finally,
we describe the characteristics of modern storage hardware.

2.1. Log-Structured Merge-Tree

An LSM-tree is a persistent structure that provides efficient indexing for a key-value
store with a high rate of inserts and deletes [ONeil et al. 1996]. An LSM-tree defers
and batches data writes into large chunks to use the high sequential bandwidth of
hard drives. Since random writes are nearly two orders of magnitude slower than
sequential writes on hard drives, LSM-trees provide better write performance than
traditional B-trees, which require random accesses.

An LSM-tree consists of a number of components of exponentially increasing sizes,
C0 to Ck, as shown in Figure 1. The C0 component is a memory-resident update-in-place
sorted tree, while the other components C1 to Ck are disk-resident append-only B-trees.

During an insert in an LSM-tree, the inserted key-value pair is appended to an on-
disk sequential log file, so as to enable recovery in case of a crash. Then, the key-value
pair is added to the in-memory C0, which is sorted by keys; C0 allows efficient lookups
and scans on recently inserted key-value pairs. Once C0 reaches its size limit, it will be
merged with the on-disk C1 in an approach similar to merge sort; this process is known
as compaction. The newly merged tree will be written to disk sequentially, replacing
the old version of C1. Compaction (i.e., merge sorting) also happens for on-disk compo-
nents, when each Ci reaches its size limit. Note that compactions are only performed
between adjacent levels (Ci and Ci+1), and they can be executed asynchronously in the
background.
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Fig. 1. LSM-tree and LevelDB architecture. This figure shows the standard LSM-tree and LevelDB archi-
tecture. For LevelDB, inserting a key-value pair goes through many steps: (1) the log file, (2) the memtable,
(3) the immutable memtable, (4) an SSTable in L0, and (5) compacted to further levels.

To serve a lookup operation, LSM-trees may need to search multiple components.
Note that C0 contains the freshest data, followed by C1, and so on. Therefore, to retrieve
a key-value pair, the LSM-tree searches components starting from C0 in a cascading
fashion until it locates the desired data in the smallest component Ci. Compared with
B-trees, LSM-trees may need multiple reads for a point lookup. Hence, LSM-trees are
most useful when inserts are more common than lookups [Athanassoulis et al. 2015;
ONeil et al. 1996].

2.2. LevelDB

LevelDB is a widely used key-value store based on LSM-trees and inspired by
BigTable [Chang et al. 2006; Ghemawat and Dean 2011]. LevelDB supports range
queries, snapshots, and other features that are useful in modern applications. In this
section, we briefly describe the core design of LevelDB.

The LevelDB interface is a basic key-value store API, with certain richer functions
including methods to create batches, snapshots, and iterators. The main methods are
Put(), Delete(), Get(), Write(), NewIterator(), GetSnapshot(), and Compact-
Range(). The Write() operation is used to batch multiple writes together; internally,
Put() and Delete() operations are implemented as batched writes. Snapshots are used
to save previous versions of values for different keys. On each write, a sequence num-
ber is generated; garbage collection for earlier (nonlive) snapshots is performed during
compaction. The compaction only retains key-value pairs with sequence numbers that
are greater than or equal to the oldest live snapshot (i.e., the snapshot that was marked
by GetSnapshot and not yet released).

Range queries are implemented through an iterator-based interface, with Next() and
Prev() methods for scanning and Seek(), SeekToFirst(), and SeekToLast() methods
for jumping to specific keys. The CompactRange() operation gives users the ability to
trigger compactions before the automated compaction (discussed later) begins.

The overall architecture of LevelDB is shown in Figure 1. The main data structures
in LevelDB are an on-disk log file, two in-memory sorted skiplists (memtable and im-
mutable memtable), and seven levels (L0 to L6) of on-disk Sorted String Table (SSTable)
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Fig. 2. SSTable structure. The figure depicts the logical layout of an SSTable file.

Fig. 3. Data and index blocks. Structure of the data and index blocks of an SSTable file.

files. LevelDB initially stores inserted key-value pairs in a log file and the in-memory
memtable. Once the memtable is full, LevelDB switches to a new memtable and log
file to handle further inserts from the user; in the background, the previous memtable
is converted into an immutable memtable, and a compaction thread then flushes it
to disk, generating a new SSTable file at level 0 (L0) with a rough size of 2MB; the
previous log file is subsequently discarded.

The SSTable file organizes all data in the form of a sequence of triplets:
<block data, type, CRC>. The type refers to the compression status of the data.
While this sequence of triplets is the actual layout of the file, the logical contents of
these files, as shown in Figure 2, are a set of data blocks, a meta-index block, an index
block, an optional filter block, and a footer.

Data blocks consist of a prefix-compressed set of key-value pairs as shown in Figure 3.
For a fixed number of key-value pairs (16 by default), LevelDB stores only a suffix of
each key, ignoring the prefix it shares with the previous key. Each such sequence is
followed by a restart point where the full key is stored. The end of the data block
consists of the offsets to all the restart points, enabling a quick binary-search-based
lookup for keys. Index blocks consist of <key, offset, size> triplets for each data
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block, where the key points to the first key in the block. Since entries in the SSTable are
in key order, this provides an easy way to identify which block to read during lookup.
The meta-index block consists of a pointer (i.e., an offset) to the filter block. The filter
block consists of a Bloom filter for the file; it can indicate absence of a key and removes
the need for expensive seeks and scans through the index and data blocks. Finally, the
footer block consists of pointers to the meta-index and index blocks.

The size of all files in each level is limited and increases by a factor of 10 with the
level number. For example, the size limit of all files at L1 is 10MB, while the limit of L2
is 100MB. To maintain the size limit, once the total size of a level Li exceeds its limit,
the compaction thread will choose one file from Li, merge sort with all the overlapped
files of Li+1, and generate new Li+1 SSTable files. The compaction thread continues
until all levels are within their size limits. During compaction, LevelDB ensures that
all files in a particular level (except L0) do not overlap in their key ranges; keys in files
of L0 can overlap with each other since they are directly flushed from the memtable.

To serve a lookup operation, LevelDB searches the memtable first and immutable
memtable next, and then files L0 to L6 in order. For levels other than 0, a MANIFEST
file stores the smallest and largest key in each SSTable file in those levels. This is used
during lookup to identify the file that contains a key in a specific level. The number of
file searches required to locate a random key is bounded by the maximum number of
levels, since keys do not overlap between files within a single level, except in L0. Since
files in L0 can contain overlapping keys, a lookup may search multiple files at L0. To
avoid a large lookup latency, LevelDB throttles foreground write traffic if the number
of files at L0 is bigger than eight, in order to wait for the compaction thread to compact
some files from L0 to L1.

2.3. Write and Read Amplification

Write and read amplification are major problems in LSM-trees such as LevelDB. Write
(read) amplification is defined as the ratio between the amount of data written to (read
from) the underlying storage device and the amount of data requested by the user. In
this section, we analyze the write and read amplification in LevelDB.

To achieve mostly sequential disk access, LevelDB writes more data than necessary
(although still sequentially); that is, LevelDB has high write amplification. Since the
size limit of Li is 10 times that of Li−1, when merging a file from Li−1 to Li during
compaction, LevelDB may read up to 10 files from Li in the worst case and write
back these files to Li after sorting. Therefore, the write amplification of moving a
file across two levels can be up to 10. For a large dataset, since any newly generated
table file can eventually migrate from L0 to L6 through a series of compaction steps,
write amplification can be over 50 (10 for each gap between L1 to L6).

Read amplification has been a major problem for LSM-trees due to tradeoffs made in
the design. There are two sources of read amplification in LevelDB. First, to look up a
key-value pair, LevelDB may need to check multiple levels. In the worst case, LevelDB
needs to check eight files in L0 and one file for each of the remaining six levels: a total
of 14 files. Second, to find a key-value pair within an SSTable file, LevelDB needs to
read multiple metadata blocks within the file. Specifically, the amount of data actually
read is given by (index block + bloom-filter blocks + data block). For example,
to look up a 1KB key-value pair, LevelDB needs to read a 16KB index block, a 4KB
Bloom filter block, and a 4KB data block—in total, 24KB. Therefore, considering the
14 SSTable files in the worst case, the read amplification of LevelDB is 24 × 14 = 336.
Smaller key-value pairs will lead to an even higher read amplification.

To measure the amount of amplification seen in practice with LevelDB, we perform
the following experiment. We first load a database with 1KB key-value pairs and then
look up 100,000 entries from the database; we use two different database sizes for the
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Fig. 4. Write and read amplification. This figure shows the write amplification and read amplification of
LevelDB for two different database sizes, 1GB and 100GB. Key size is 16B and value size is 1KB.

initial load and choose keys randomly from a uniform distribution. Figure 4 shows
write amplification during the load phase and read amplification during the lookup
phase. For a 1GB database, write amplification is 3.1, while for a 100GB database, write
amplification increases to 14. Read amplification follows the same trend: 8.2 for the 1GB
database and 327 for the 100GB database. The reason write amplification increases
with database size is straightforward. With more data inserted into a database, the
key-value pairs will more likely travel further along the levels; in other words, LevelDB
will write data many times when compacting from low levels to high levels. However,
write amplification does not reach the worst case predicted previously, since the average
number of files merged between levels is usually smaller than the worst case of 10.
Read amplification also increases with the dataset size, since for a small database, all
the index blocks and Bloom filters in SSTable files can be cached in memory. However,
for a large database, each lookup may touch a different SSTable file, paying the cost of
reading index blocks and Bloom filters each time.

It should be noted that the high write and read amplifications are a justified tradeoff
for hard drives. As an example, for a given hard drive with a 10ms seek latency and a
100MB/s throughput, the approximate time required to access a random 1K of data is
10ms, while that for the next sequential block is about 10μs—the ratio between random
and sequential latency is 1,000:1. Hence, compared to alternative data structures such
as B-trees that require random write accesses, a sequential-write-only scheme with
write amplification less than 1,000 will be faster on a hard drive [ONeil et al. 1996;
Sears and Ramakrishnan 2012]. On the other hand, the read amplification for LSM-
trees is still comparable to B-trees. For example, considering a B-tree with a height of
five and a block size of 4KB, a random lookup for a 1KB key-value pair would require
accessing six blocks, resulting in a read amplification of 24.

2.4. Fast Storage Hardware

Many modern servers adopt SSD devices to achieve high performance. Similar to
hard drives, random writes are considered harmful also in SSDs [Arpaci-Dusseau and
Arpaci-Dusseau 2014; Kim et al. 2012; Lee et al. 2015; Min et al. 2012] due to their
unique erase-write cycle and expensive garbage collection. Although initial random-
write performance for SSDs is good, the performance can significantly drop after the
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Fig. 5. Sequential and random reads on SSD. This figure shows the sequential and random read performance
for various request sizes on a modern SSD device. All requests are issued to a 100GB file on ext4.

reserved blocks are utilized. The LSM-tree characteristic of avoiding random writes
is hence a natural fit for SSDs; many SSD-optimized key-value stores are based on
LSM-trees [Dong 2015; Shetty et al. 2013; Wang et al. 2014; Wu et al. 2015].

However, unlike hard drives, the relative performance of random reads (compared
to sequential reads) is significantly better on SSDs; furthermore, when random reads
are issued concurrently in an SSD, the aggregate throughput can match sequential
throughput for some workloads [Chen et al. 2011]. As an example, Figure 5 shows the
sequential and random read performance of a 500GB Samsung 840 EVO SSD, for var-
ious request sizes. For random reads by a single thread, the throughput increases with
the request size, reaching half the sequential throughput for 256KB. With concurrent
random reads by 32 threads, the aggregate throughput matches sequential throughput
when the size is larger than 16KB. For more high-end SSDs, the gap between concur-
rent random reads and sequential reads is much smaller [Fusion-IO 2015; Marmol
et al. 2015].

As we showed in this section, LSM-trees have a high write and read amplification,
which is acceptable for hard drives. Using LSM-trees on a high-performance SSD may
waste a large percentage of device bandwidth with excessive writing and reading. In
this article, our goal is to improve the performance of LSM-trees on SSD devices to
efficiently exploit device bandwidth.

3. WISCKEY

The previous section explained how LSM-trees maintain sequential I/O access by in-
creasing I/O amplification. While this tradeoff between sequential I/O access and I/O
amplification is justified for traditional hard disks, LSM-trees are not optimal for mod-
ern hardware utilizing SSDs. In this section, we present the design of WiscKey, a
key-value store that minimizes I/O amplification on SSDs.

To realize an SSD-optimized key-value store, WiscKey includes four critical ideas.
First, WiscKey separates keys from values, keeping only keys in the LSM-tree and
the values in a separate log file. Second, to deal with unsorted values (which neces-
sitate random access during range queries), WiscKey uses the parallel random-read
characteristic of SSD devices. Third, WiscKey utilizes unique crash consistency and
garbage collection techniques to efficiently manage the value log. Finally, WiscKey
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optimizes performance by removing the LSM-tree log without sacrificing consistency,
thus reducing system-call overhead from small writes.

3.1. Design Goals

WiscKey is a single-machine persistent key-value store, derived from LevelDB. It can
be deployed as the storage engine for a relational database (e.g., MySQL) or a dis-
tributed key-value store (e.g., MongoDB). It provides the same API as LevelDB, in-
cluding Put(key, value), Get(key), Delete(key), and Scan(start, end). The design
of WiscKey follows these main goals.
Low write amplification. Write amplification introduces extra unnecessary writes.
Although SSD devices have higher bandwidth compared to hard drives, large write
amplification can consume most of the write bandwidth (over 90% is not uncommon)
and decrease the SSD’s lifetime due to limited erase cycles. Therefore, it is important
to minimize write amplification to improve performance and device lifetime.
Low read amplification. Large read amplification causes two problems. First, the
throughput of lookups is significantly reduced by issuing multiple reads for each lookup.
Second, the large amount of data loaded into memory decreases the efficiency of the
cache. WiscKey targets a small read amplification to speed up lookups.
SSD optimized. WiscKey is optimized for SSD devices by matching its I/O patterns
with the performance characteristics of SSD devices. Specifically, sequential writes
and parallel random reads are employed so that applications can fully utilize device
bandwidth.
Feature-rich API. WiscKey aims to support modern features that have made LSM-
trees popular, such as range queries and snapshots. Range queries allow scanning a
contiguous sequence of key-value pairs. Snapshots allow capturing the state of the
database at a particular time and then performing lookups on the state.
Realistic key-value sizes. Keys are usually small in modern workloads (e.g.,
16B) [Anand et al. 2010; Andersen et al. 2009; Atikoglu et al. 2015; Debnath et al.
2010; Lim et al. 2011], though value sizes can vary widely (e.g., 100B to larger than
4KB) [Ahn et al. 2016; Atikoglu et al. 2015; Debnath et al. 2010; Golan-Gueta et al.
2015; Lai et al. 2015; Sears and Ramakrishnan 2012]. WiscKey aims to provide high
performance for this realistic set of key-value sizes.

3.2. Key-Value Separation

The major performance cost of LSM-trees is the compaction process, which constantly
sorts SSTable files. During compaction, multiple files are read into memory, sorted, and
written back, which could significantly affect the performance of foreground workloads.
However, sorting is required for efficient retrieval; with sorting, range queries (i.e.,
scans) result mostly in sequential access to multiple files, while point queries require
accessing at most one file at each level.

WiscKey is motivated by a simple revelation. Compaction only needs to sort keys,
while values can be managed separately [Nyberg et al. 1994]. Since keys are usually
smaller than values, compacting only keys could significantly reduce the amount of
data needed during the sorting. In WiscKey, only the location of the value is stored
in the LSM-tree with the key, while the actual values are stored elsewhere in an
SSD-friendly fashion. With this design, for a database with a given size, the size of
the LSM-tree of WiscKey is much smaller than that of LevelDB. The smaller LSM-
tree can remarkably reduce the write amplification for modern workloads that have
a moderately large value size. For example, assuming a 16B key, a 1KB value, and a
write amplification of 10 for keys (in the LSM-tree) and 1 for values, the effective write
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Fig. 6. WiscKey data layout on SSD. This figure shows the data layout of WiscKey on a single SSD device.
Keys and values’ locations are stored in LSM-tree while values are appended to a separate value log file.

amplification of WiscKey is only (10 × 16 + 1024) / (16 + 1024) = 1.14. In addition to
improving the write performance of applications, the reduced write amplification also
improves an SSD’s lifetime by requiring fewer erase cycles.

WiscKey’s smaller read amplification improves lookup performance. During lookup,
WiscKey first searches the LSM-tree for the key and the value’s location; once found,
another read is issued to retrieve the value. Readers might assume that WiscKey
will be slower than LevelDB for lookups, due to its extra I/O to retrieve the value.
However, since the LSM-tree of WiscKey is much smaller than LevelDB (for the same
database size), a lookup will likely search fewer levels of table files in the LSM-tree;
furthermore, a significant portion of the LSM-tree can be easily cached in memory.
Hence, each lookup only requires a single random read (for retrieving the value) and
thus achieves better lookup performance than LevelDB. For example, assuming 16B
keys and 1KB values, if the size of the entire key-value dataset is 100GB, then the size
of the LSM-tree is roughly 2GB (assuming a 12B cost for a value’s location and size),
which readily fits into main memory on modern systems.

WiscKey’s architecture is shown in Figure 6. Keys are stored in an LSM-tree while
values are stored in a separate value-log file, the vLog. The artificial value stored along
with the key in the LSM-tree is the address of the actual value in the vLog.

When the user inserts a key-value pair in WiscKey, the value is first appended to the
vLog, and the key is then inserted into the LSM-tree along with the value’s address
(<vLog-offset, value-size>). Deleting a key simply deletes it from the LSM tree,
without accessing the vLog. All valid values in the vLog have corresponding keys in
the LSM-tree; the other values in the vLog are invalid and will be garbage collected
later, as we discuss later (Section 3.3.2).

When the user queries for a key, the key is first searched for in the LSM-tree, and if
found, the corresponding value’s address is retrieved. Then, WiscKey reads the value
from the vLog. Note that this process is applied to both point queries and range queries.

3.3. Challenges

Although the idea behind key-value separation is simple, it leads to many challenges
and optimization opportunities. For example, the separation of keys and values makes
range queries require random I/O. Furthermore, the separation makes both garbage
collection and crash consistency challenging. We now explain how we address these
challenges.

3.3.1. Parallel Range Query. Range queries are an important feature of modern
key-value stores, allowing users to scan a range of key-value pairs. Relational
databases [Facebook 2015], local file systems [Jannen et al. 2015; Ren and Gibson
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2013; Shetty et al. 2013], and even distributed file systems [Mai and Zhao 2015] use
key-value stores as their storage engines, and range queries are a core API requested
in these environments.

As previously described, for range queries, LevelDB provides the user with an
iterator-based interface including Seek(), Next(), Prev(), Key(), and Value() oper-
ations. To scan a range of key-value pairs, users can first Seek() to the starting key,
then call Next() or Prev() to search keys one by one. To retrieve the key or the value
of the current iterator position, users call Key() or Value(), respectively.

In LevelDB, since keys and values are stored together and sorted, a range query
can sequentially read key-value pairs from SSTable files. However, since keys and
values are stored separately in WiscKey, range queries require random reads, and are
hence not as efficient. As we saw previously in Figure 5, random read performance of
a single thread on SSD is lower than sequential read performance. However, parallel
random reads with a fairly large request size can fully utilize SSD internal parallelism,
obtaining performance on par with sequential reads.

Thus, to make range queries efficient, WiscKey leverages the parallel I/O charac-
teristic of SSD devices to prefetch values from the vLog during range queries. The
underlying idea is that, with SSDs, only keys require special attention for efficient re-
trieval. As long as keys are retrieved efficiently, range queries can use parallel random
reads to efficiently retrieve values.

The prefetching framework can easily fit with the current range query interface. In
the current interface, if the user requests a range query, an iterator is returned to the
user. For each Next() or Prev() requested on the iterator, WiscKey tracks the access
pattern of the range query. Once a contiguous sequence of key-value pairs is requested,
WiscKey starts reading a number of following keys from the LSM-tree sequentially.
The corresponding value addresses retrieved from the LSM-tree are inserted into a
queue; multiple threads fetch these values from the vLog concurrently.

3.3.2. Garbage Collection. Key-value stores based on standard LSM-trees do not im-
mediately reclaim free space when a key-value pair is deleted or overwritten. Rather,
during compaction, if data relating to a deleted or overwritten key-value pair is found,
the data is discarded and space is reclaimed. In WiscKey, only invalid keys are re-
claimed by LSM-tree compaction. Since WiscKey does not compact values, it needs a
special garbage collector to reclaim free space in the vLog.

Because we only store the values in the vLog file (Section 3.2), a naive way to reclaim
free space from the vLog is to first scan the LSM-tree to retrieve all the valid value
addresses; then, all the values in the vLog without any valid reference from the LSM-
tree can be viewed as invalid and reclaimed. However, this method is too heavyweight
and is only usable for offline garbage collection.

WiscKey targets a lightweight and online garbage collector. To make this possible,
we introduce a small change to WiscKey’s basic data layout: while storing values in the
vLog, we also store the corresponding key along with the value. The new data layout
is shown in Figure 7: the tuple <key size, value size, key, value> is stored in the
vLog.

WiscKey’s garbage collection aims to keep valid values (that do not correspond to
deleted keys) in a contiguous range of the vLog, as shown in Figure 7. One end of this
range, the head, always corresponds to the end of the vLog where new values will be
appended. The other end of this range, known as the tail, is where garbage collection
starts freeing space whenever it is triggered. Only the part of the vLog between the
head and the tail contains valid values and will be accessed during lookups.

During garbage collection, WiscKey first reads a chunk of key-value pairs (e.g., sev-
eral megabytes) from the tail of the vLog, then finds which of those values are valid
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Fig. 7. WiscKey new data layout for garbage collection. This figure shows the new data layout of WiscKey
to support an efficient garbage collection. A head and tail pointer are maintained in memory and stored
persistently in the LSM-tree. Only the garbage collection thread changes the tail, while all writes to the
vLog are appended to the head.

(not yet overwritten or deleted) by querying the LSM-tree. WiscKey then appends valid
values back to the head of the vLog. Finally, it frees the space occupied previously by
the chunk and updates the tail accordingly.

To avoid losing any data if a crash happens during garbage collection, WiscKey has to
make sure that the newly appended valid values and the new tail are persistent on the
device before actually freeing space. WiscKey achieves this using the following steps.
After appending the valid values to the vLog, the garbage collection calls an fsync()
on the vLog. Then, it adds these new values’ addresses and current tail to the LSM-
tree in a synchronous manner; the tail is stored in the LSM-tree as <tail-marker,
tail-vLog-offset>. Finally, the free space in the vLog is reclaimed.

WiscKey can be configured to initiate and continue garbage collection periodically or
until a particular threshold is reached. The garbage collection can also run in offline
mode for maintenance. Garbage collection can be triggered rarely for workloads with
few deletes and for environments with overprovisioned storage space.

3.3.3. Crash Consistency. On a system crash, LSM-tree implementations usually guar-
antee atomicity of inserted key-value pairs and in-order recovery of inserted pairs.
Because WiscKey’s architecture stores values separately from the LSM-tree, obtaining
the same crash guarantees might appear complicated. However, WiscKey provides the
same crash guarantees by using an interesting property of modern file systems (such
as ext4, btrfs, and xfs). Consider a file that contains the sequence of bytes 〈b1b2b3...bn〉,
and the user appends the sequence 〈bn+1bn+2bn+3...bn+m〉 to it. If a crash happens, after
file system recovery in modern file systems, the file will be observed to contain the
sequence of bytes 〈b1b2b3...bnbn+1bn+2bn+3...bn+x〉 ∃ x < m; that is, only some prefix of the
appended bytes will be added to the end of the file during file system recovery [Pillai
et al. 2014]. It is not possible for random bytes or a nonprefix subset of the appended
bytes to be added to the file. Because values are appended sequentially to the end of the
vLog file in WiscKey, the aforementioned property conveniently translates as follows:
if a value X in the vLog is lost in a crash, all values inserted after X are lost too.

When the user queries a key-value pair, if WiscKey cannot find the key in the LSM-
tree because the key had been lost during a system crash, WiscKey behaves exactly like
traditional LSM-trees: even if the value had been written in the vLog before the crash,
it will be garbage collected later. If the key could be found in the LSM tree, however,
an additional step is required to maintain consistency. In this case, WiscKey verifies
first whether the value address retrieved from the LSM-tree falls within the current
valid range of the vLog, and then whether the value found corresponds to the queried
key. If the verifications fail, WiscKey assumes that the value was lost during a system
crash, deletes the key from the LSM-tree, and informs the user that the key was not
found. Because each value added to the vLog has a header including the corresponding
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Fig. 8. Impact of write unit size. This figure shows the total time to write a 10GB file to an ext4 file system
on an SSD device, followed by an fsync() at the end. We vary the size of each write() system call.

key, verifying whether the key and the value match is straightforward; if necessary, a
magic number or checksum can be easily added to the header.

LSM-tree implementations also guarantee the user durability of key-value pairs
after a system crash if the user specifically requests synchronous inserts. WiscKey
implements synchronous inserts by flushing the vLog before performing a synchronous
insert into its LSM-tree.

3.4. Optimizations

Separating keys from values in WiscKey provides an opportunity to rethink how the
value log is updated and the necessity of the LSM-tree log. We now describe how these
opportunities can lead to improved performance.

3.4.1. Value-Log Write Buffer. For each Put(), WiscKey needs to append the value to
the vLog by using a write() system call. However, for an insert-intensive workload,
issuing a large number of small writes to a file system can introduce a noticeable
overhead, especially on a fast storage device [Caulfield et al. 2010; Peter et al. 2014].
Figure 8 shows the total time to sequentially write a 10GB file in ext4 (Linux 3.14).
For small writes, the overhead of each system call aggregates significantly, leading to a
long runtime. With large writes (larger than 4KB), device throughput is fully utilized.

To reduce overhead, WiscKey buffers values in a user-space buffer and flushes the
buffer only when the buffer size exceeds a threshold or when the user requests a
synchronous insertion. Thus, WiscKey only issues large writes and reduces the number
of write() system calls. For a lookup, WiscKey first searches the vLog buffer, and if not
found there, actually reads from the vLog. Obviously, this mechanism might result in
some data (that is buffered) being lost during a crash; the crash consistency guarantee
obtained is similar to LevelDB.

3.4.2. Optimizing the LSM-Tree Log. As shown in Figure 1, a log file is usually used in
LSM-trees. The LSM-tree tracks inserted key-value pairs in the log file so that, if the
user requests synchronous inserts and there is a crash, the log can be scanned after
reboot and the inserted key-value pairs recovered.

In WiscKey, the LSM-tree is only used for keys and value addresses. Moreover, the
vLog also records inserted keys to support garbage collection as described previously.
Hence, writes to the LSM-tree log file can be avoided without affecting correctness.
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If a crash happens before the keys are persistent in the LSM-tree, they can be
recovered by scanning the vLog. However, a naive algorithm would require scanning
the entire vLog for recovery. To reduce the amount of scanning required, WiscKey
records the head of the vLog periodically in the LSM-tree, as a key-value pair <head-
marker, head-vLog-offset>. When a database is opened, WiscKey starts the vLog
scan from the most recent head position stored in the LSM-tree and continues scanning
until the end of the vLog. Because the head is stored in the LSM-tree and the LSM-
tree inherently guarantees that keys inserted into the LSM-tree will be recovered
in the inserted order, this optimization is crash consistent. Therefore, removing the
LSM-tree log of WiscKey is a safe optimization and improves performance, especially
when there are many small insertions.

3.5. Implementation

WiscKey is based on LevelDB 1.18. WiscKey creates a vLog when creating a new
database and manages the keys and value addresses in the LSM-tree. The vLog is in-
ternally accessed by multiple components with different access patterns. For example, a
lookup is served by randomly reading the vLog, while the garbage collector sequentially
reads from the tail and appends to the head of the vLog file. We use posix_fadvise()
to predeclare access patterns for the vLog under different situations.

For range queries, WiscKey maintains a background thread pool with 32 threads.
These threads sleep on a thread-safe queue, waiting for new value addresses to arrive.
When prefetching is triggered, WiscKey inserts a fixed number of value addresses to
the worker queue and then wakes up all the sleeping threads. These threads will start
reading values in parallel, caching them in the buffer cache automatically.

To efficiently garbage collect the free space of the vLog, we use the hole-punching
functionality of modern file systems (fallocate()). Punching a hole in a file can free
the physical space allocated and allows WiscKey to elastically use the storage space.
The maximal file size on modern file systems is big enough for WiscKey to run a long
time without wrapping back to the beginning of the file; for example, the maximal file
size is 64TB on ext4, 8EB on xfs, and 16EB on btrfs. The vLog can be trivially adapted
into a circular log if necessary.

4. EVALUATION

In this section, we present evaluation results that demonstrate the benefits of the
design choices of WiscKey. Specifically, we seek to answer the following fundamental
performance questions about WiscKey:

(1) Does key-value separation result in lower write and read amplification, and how
does it impact performance (throughput, tail latency) and device endurance?

(2) Does the parallel range query in WiscKey work efficiently with modern SSDs?
(3) What is the effect of garbage collection on WiscKey’s performance?
(4) Does WiscKey maintain crash consistency, and how long does it take to recover

after a crash?
(5) What are the CPU overheads of WiscKey?
(6) How does WiscKey perform on real workloads, compared to its peers?

4.1. Experimental Setup

All experiments are run on a testing machine with two Intel Xeon CPU E5-2667 v2 @
3.30GHz processors and 64GB of memory. The operating system is 64-bit Linux 3.14,
and the file system used is ext4. The storage device used is a 500GB Samsung 840
EVO SSD, which has 500MB/s sequential-read and 400MB/s sequential-write maximal
performance; random read performance is shown in Figure 5.
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Fig. 9. Sequential-load performance. This figure shows the sequential-load throughput of LevelDB and
WiscKey for different value sizes for a 100GB dataset. Key size is 16B.

4.2. Microbenchmarks

We use db_bench (the default microbenchmarks in LevelDB) to evaluate LevelDB
and WiscKey. We always use a key size of 16B but perform experiments for differ-
ent value sizes. We disable data compression for easier understanding and analysis of
performance.

4.2.1. Load Performance. We now describe the results for the sequential-load and
random-load microbenchmarks. The former benchmark constructs a 100GB database
by inserting keys in a sequential order, while the latter inserts keys in a uniformly
distributed random order. Note that the sequential-load benchmark does not cause
compaction in either LevelDB or WiscKey, while the random load does.

Figure 9 shows the sequential-load throughput of LevelDB and WiscKey for a wide
range of value sizes: the throughput of both stores increases with the value size. How-
ever, even for the largest value size considered (256KB), LevelDB’s throughput is far
below peak device bandwidth. To analyze this result further, Figure 10 presents a
breakdown of how time is spent in different components during each run of the bench-
mark. As seen in the figure, time is spent in three major parts: writing to the log file,
inserting to the memtable, and waiting for the memtable to be flushed to the device.
For small key-value pairs, writing to the log file accounts for the most significant per-
centage of the total time, due to the inefficiency of small writes (seen previously in
Figure 8). For larger pairs, log writing and the memtable sorting are more efficient,
while waiting for memtable flushes becomes the bottleneck. Unlike LevelDB, WiscKey
reaches the full device bandwidth for value sizes more than 4KB. Because WiscKey
does not write to the LSM-tree log and buffers append to the vLog, it is 3× faster even
for small values.

Figure 11 shows the random-load throughput of LevelDB and WiscKey for different
value sizes. LevelDB’s throughput ranges from only 2MB/s (64B value size) to 4.1MB/s
(256KB value size), while WiscKey’s throughput increases with the value size, reaching
the peak device write throughput after the value size is larger than 4KB. WiscKey’s
throughput is 46× and 111× of LevelDB for the 1KB and 4KB value sizes, respectively.
LevelDB has low throughput because compaction both consumes a large percentage
of the device bandwidth and also slows down foreground writes (to avoid overloading
the L0 of the LSM-tree, as described earlier (Section 2.2). In WiscKey, compaction only
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Fig. 10. Sequential-load time breakdown of LevelDB. This figure shows the percentage of time incurred in
different components during sequential load in LevelDB. Time is broken down into time spent waiting for
the memtable to be flushed (Wait), writing to the log file (Log), inserting data into the memtable (Memtable),
and other time (Other).

Fig. 11. Random-load performance. This figure shows the random-load throughput of LevelDB and WiscKey
for different value sizes for a 100GB dataset. Key size is 16B.

introduces a small overhead, leading to the full device bandwidth being effectively
utilized.

To analyze this result further, Figure 12 presents the write amplification of LevelDB
and WiscKey. The write amplification of LevelDB is always more than 12, while that
of WiscKey decreases quickly to nearly one when the value size reaches 1KB, because
the LSM-tree of WiscKey is significantly smaller.

Finally, we examine the latency of writes for one particular value size under random
writes. Figure 13 shows a latency CDF for 4KB random writes for both LevelDB and
WiscKey. The distribution shows that WiscKey generally has (much) lower latencies,
and is far more predictable in its performance, than LevelDB (note: the x-scale is loga-
rithmic). This result is due to the reduced effect that compaction has on the foreground
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Fig. 12. Write amplification of random load. This figure shows the write amplification of LevelDB and
WiscKey for randomly loading a 100GB database.

Fig. 13. Random write latencies (CDF). This figure shows the cumulative distribution function for random
writes with 4KB value sizes.

workload; with a smaller tree, WiscKey performs fewer compactions and thus delivers
higher performance.

To demonstrate the differences between the LSM-trees of WiscKey and LevelDB,
we also measured the sizes of the SStable files that comprise each system’s LSM-tree;
the results are shown in Figure 14. After the random-write workload has completed,
WiscKey’s tree is almost entirely compressed into just two levels (2 and 3), whereas the
LSM-tree of LevelDB spans six levels (0 through 5). Furthermore, the total size differ-
ence between the two trees is enormous; the approximate total file size for WiscKey is
358MB, whereas for LevelDB it is roughly 100GB.

4.2.2. Query Performance. We now compare the random lookup (point query) and range
query performance of LevelDB and WiscKey. Figure 15 presents the random lookup
results of 100,000 operations on a 100GB random-loaded database. Even though a
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Fig. 14. Table size breakdown. The figure shows the amount of data in each of the levels of LevelDB and
WiscKey.

Fig. 15. Random lookup performance. This figure shows the random lookup performance for 100,000 oper-
ations on a 100GB database that is randomly loaded.

random lookup in WiscKey needs to check both the LSM-tree and the vLog, the
throughput of WiscKey is still much better than LevelDB: for 1KB value size, Wis-
cKey’s throughput is 12× that of LevelDB. For large value sizes, the throughput of
WiscKey is only limited by the random read throughput of the device, as shown in
Figure 5. LevelDB has low throughput due to high read amplification (Section 2.3).
WiscKey performs significantly better because the read amplification is lower due to a
smaller LSM-tree. Another reason for WiscKey’s performance is that the compaction
process in WiscKey is less I/O intensive, avoiding many background reads and writes.

We delve further into these results by presenting the latency breakdown of 4KB
reads. Figure 16 presents the cumulative distribution of lookup latencies for both
WiscKey and LevelDB. As you can see from the figure, WiscKey achieves notably lower
latencies for roughly half of its requests; caching of the LSM-tree and repeated access
to cached values explains this performance advantage. However, some reads are indeed
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Fig. 16. Random read latencies (CDF). This figure shows the cumulative distribution function for random
reads with 4KB value sizes.

Fig. 17. Range query performance. This figure shows range query performance; 4GB of data is queried from
a 100GB database that is randomly (Rand) and sequentially (Seq) loaded.

slower in WiscKey than in LevelDB, due to the cost of (randomly) accessing values from
the vLog.

Figure 17 shows the range query (scan) performance of LevelDB and WiscKey. For
a randomly loaded database, LevelDB reads multiple files from different levels, while
WiscKey requires random accesses to the vLog (but WiscKey leverages parallel random
reads). As can be seen from Figure 17, the throughput of LevelDB initially increases
with the value size for both databases. However, beyond a value size of 4KB, since an
SSTable file can store only a small number of key-value pairs, the overhead is domi-
nated by opening many SSTable files and reading the index blocks and Bloom filters in
each file. For larger key-value pairs, WiscKey can deliver the device’s sequential band-
width, up to 8.4× of LevelDB. However, WiscKey performs 12× worse than LevelDB
for 64B key-value pairs due to the device’s limited parallel random-read throughput for
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Fig. 18. Garbage collection. This figure shows the performance of WiscKey under garbage collection for
various free-space ratios.

small request sizes; WiscKey’s relative performance is better on high-end SSDs with
higher parallel random-read throughput [Fusion-IO 2015]. Furthermore, this workload
represents a worst case where the database is randomly filled and the data is unsorted
in the vLog.

Figure 17 also shows the performance of range queries when the data is sorted, which
corresponds to a sequentially loaded database; in this case, both LevelDB and WiscKey
can sequentially scan through data. Performance for sequentially loaded databases
follows the same trend as randomly loaded databases; for 64B pairs, WiscKey is 25%
slower because WiscKey reads both the keys and the values from the vLog (thus wasting
bandwidth), but WiscKey is 2.8× faster for large key-value pairs. Thus, with small
key-value pairs, log reorganization (sorting) for a random-loaded database can make
WiscKey’s range-query performance comparable to LevelDB’s performance.

4.2.3. Garbage Collection. We now investigate WiscKey’s performance while garbage
collection is performed in the background. The performance can potentially vary de-
pending on the percentage of free space found during garbage collection, since this
affects the amount of data written and the amount of space freed by the garbage collec-
tion thread. We use random-load (the workload that is most affected by garbage collec-
tion) as the foreground workload and study its performance for various percentages of
free space. Our experiment specifically involves three steps: we first create a database
using random-load, then delete the required percentage of key-value pairs, and finally,
we run the random-load workload and measure its throughput while garbage collection
happens in the background. We use a key-value size of 4KB and vary the percentage
of free space from 25% to 100%.

Figure 18 shows the results: if 100% of data read by the garbage collector is invalid,
the throughput is only 10% lower. Throughput is only marginally lower because garbage
collection reads from the tail of the vLog and writes only valid key-value pairs to the
head; if the data read is entirely invalid, no key-value pair needs to be written. For other
percentages of free space, throughput drops about 35% since the garbage collection
thread performs additional writes. Note that, in all cases, while garbage collection is
happening, WiscKey is at least 70× faster than LevelDB.

4.2.4. Crash Consistency. Separating keys from values necessitates additional mecha-
nisms to maintain crash consistency. We verify the crash consistency mechanisms of
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Fig. 19. Space amplification. This figure shows the actual database size of LevelDB and WiscKey for a
random-load workload of a 100GB dataset. User-Data represents the logical database size.

WiscKey by using the ALICE tool [Alagappan et al. 2016; Pillai et al. 2014]; the tool
chooses and simulates a comprehensive set of system crashes that have a high prob-
ability of exposing inconsistency. We use a test case that invokes a few asynchronous
and synchronous Put() calls. When configured to run tests for ext4, xfs, and btrfs,
ALICE checks more than 3,000 selectively chosen system crashes and does not report
any consistency vulnerability introduced by WiscKey.

The new consistency mechanism also affects WiscKey’s recovery time after a crash,
and we design an experiment to measure the worst-case recovery time of WiscKey and
LevelDB. LevelDB’s recovery time is proportional to the size of its log file after the
crash; the log file exists at its maximum size just before the memtable is written to
disk. WiscKey, during recovery, first retrieves the head pointer from the LSM-tree and
then scans the vLog file from the head pointer till the end of the file. Since the updated
head pointer persists on disk when the memtable is written, WiscKey’s worst-case
recovery time also corresponds to a crash happening just before then. We measured
the worst-case recovery time induced by the situation described so far; for 1KB values,
LevelDB takes 0.7 seconds to recover the database after the crash, while WiscKey
takes 2.6 seconds. Note that WiscKey can be configured to persist the head pointer
more frequently if necessary.

4.2.5. Space Amplification. When evaluating a key-value store, most previous work fo-
cused only on read and write amplification. However, space amplification is important
for flash devices because of their expensive price-per-gigabyte compared with hard
drives. Space amplification is the ratio of the actual size of the database on disk to the
logical size of the database [Balasundaram et al. 2015]. For example, if a 1KB key-
value pair takes 4KB of space on disk, then the space amplification is 4. Compression
decreases space amplification, while extra data (garbage, fragmentation, or metadata)
increases space amplification. Compression is disabled to make the discussion simple.

For a sequential-load workload, the space amplification can be near one, given that
the extra metadata in LSM-trees is minimal. For a random-load or overwrite work-
load, space amplification is usually more than one when invalid pairs are not garbage
collected fast enough.

Figure 19 shows the database size of LevelDB and WiscKey after randomly loading
a 100GB dataset (the same workload as Figure 11). The space overhead of LevelDB
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Fig. 20. CPU usage of LevelDB and WiscKey. This table compares the CPU usage of four workloads on
LevelDB and WiscKey. Key size is 16B and value size is 1KB. Sequential load and random load sequentially
and randomly load a 100GB database, respectively. Given a 100GB random-filled database, random lookup
issues 100K random lookups, while range query sequentially scans 4GB of data.

arises due to invalid key-value pairs that are not garbage collected when the workload
is finished. The space overhead of WiscKey includes the invalid key-value pairs and
the extra metadata (pointers in the LSM-tree and the tuple in the vLog as shown in
Figure 7). After garbage collection, the database size of WiscKey is close to the logical
database size when the extra metadata is small compared to the value size.

No key-value store can minimize read amplification, write amplification, and space
amplification at the same time. Tradeoffs among these three factors are balanced dif-
ferently in various systems. In LevelDB, the sorting and garbage collection are coupled
together. LevelDB trades higher write amplification for lower space amplification; how-
ever, the workload performance can be significantly affected. WiscKey consumes more
space to minimize I/O amplification when the workload is running; because sorting
and garbage collection are decoupled in WiscKey, garbage collection can be performed
later, thus minimizing its impact on foreground performance.

4.2.6. CPU Usage. We now investigate the CPU usage of LevelDB and WiscKey for
various workloads shown in previous sections. The CPU usage shown here includes
both the application and operating system usage.

As shown in Figure 20, LevelDB has higher CPU usage for the sequential-load
workload. As we explained in Figure 10, LevelDB spends a large amount of time writing
key-value pairs to the log file. Writing to the log file involves encoding each key-value
pair, which has high CPU cost. Since WiscKey removes the log file as an optimization,
WiscKey has lower CPU usage than LevelDB. For the range query workload, WiscKey
uses 32 background threads to do the prefetch; therefore, the CPU usage of WiscKey is
much higher than LevelDB.

Overall, we find that CPU is not a bottleneck for both LevelDB and WiscKey in our
setup. However, our workloads stress single-thread I/O performance and not multi-
threaded lock contention. For more detail on how to scale LevelDB, see related work
on RocksDB [Dong 2015].

4.3. YCSB Benchmarks

The YCSB benchmark [Cooper et al. 2010] provides a framework and a standard set
of six workloads for evaluating the performance of key-value stores. We use YCSB
to compare LevelDB, RocksDB [Dong 2015], and WiscKeyon a 100GB database. In
addition to measuring the usual-case performance of WiscKey, we also run WiscKey
with garbage collection always happening in the background so as to measure its
worst-case performance. RocksDB is an SSD-optimized version of LevelDB with many
performance-oriented features, including multiple memtables and background threads
for compaction. We use RocksDB with the default configuration parameters. We eval-
uated the key-value stores with two different value sizes, 1KB and 16KB (data com-
pression is disabled).

WiscKey performs significantly better than LevelDB and RocksDB, as shown in
Figure 21. For example, during load, for 1KB values, WiscKey performs at least 50×
faster than the other databases in the usual case, and at least 45× faster in the worst
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Fig. 21. YCSB macrobenchmark performance. This figure shows the performance of LevelDB, RocksDB,
and WiscKey for various YCSB workloads. The x-axis corresponds to different workloads, and the y-axis
shows the performance normalized to LevelDB’s performance. The number on top of each bar shows the
actual throughput achieved (K ops/s). (a) shows performance under 1KB values and (b) shows performance
under 16KB values. The load workload corresponds to constructing a 100GB database and is similar to the
random-load microbenchmark. Workload A has 50% reads and 50% updates, Workload B has 95% reads
and 5% updates, and Workload C has 100% reads; keys are chosen from a Zipf, and the updates operate
on already-existing keys. Workload D involves 95% reads and 5% inserting new keys (temporally weighted
distribution). Workload E involves 95% range queries and 5% inserting new keys (Zipf), while Workload F
has 50% reads and 50% read-modify-writes (Zipf).

case (with garbage collection); with 16KB values, WiscKey performs 104× better, even
under the worst case.

For reads, the Zipf distribution used in most workloads allows popular items to be
cached and retrieved without incurring device access, thus reducing WiscKey’s advan-
tage over LevelDB and RocksDB. Hence, WiscKey’s relative performance (compared to
and RocksDB) is better in Workload A (50% reads) than in Workload B (95% reads)
and Workload C (100% reads). However, RocksDB and LevelDB still do not match Wis-
cKey’s performance in any of these workloads. The worst-case performance of WiscKey
(with garbage collection switched on always, even for read-only workloads) is better
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than LevelDB and RocksDB. However, the impact of garbage collection on performance
is markedly different for 1KB and 16KB values. Garbage collection repeatedly selects
and cleans a 4MB chunk of the vLog; with small values, the chunk will include many
key-value pairs, and thus garbage collection spends more time accessing the LSM-tree
to verify the validity of each pair. For large values, garbage collection spends less time
on the verification, and hence aggressively writes out the cleaned chunk, affecting fore-
ground throughput more. Note that, if necessary, garbage collection can be throttled to
reduce its foreground impact.

Unlike the microbenchmark considered previously, Workload E has multiple small
range queries, with each query retrieving between 1 and 100 key-value pairs. Since the
workload involves multiple range queries, accessing the first key in each range resolves
to a random lookup—a situation favorable for WiscKey. Hence, WiscKey performs better
than RocksDB and LevelDB even for these relatively small 1KB values.

5. RELATED WORK

Various key-value stores based on hash tables have been proposed for SSD devices.
FAWN [Andersen et al. 2009] keeps key-value pairs in an append-only log on the SSD
and uses an in-memory hash table index for fast lookups. FlashStore [Debnath et al.
2010] and SkimpyStash [Debnath et al. 2011] follow the same design but optimize
the in-memory hash table; FlashStore uses cuckoo hashing and compact key signa-
tures, while SkimpyStash moves a part of the table to the SSD using linear chaining.
BufferHash [Anand et al. 2010] uses multiple in-memory hash tables, with Bloom fil-
ters to choose which hash table to use for a lookup. SILT [Lim et al. 2011] is highly
optimized for memory and uses a combination of log structure, hash table, and sorted
table layouts. WiscKey shares the log-structure data layout with these key-value stores.
However, these stores use hash tables for indexing, and thus do not support modern fea-
tures that have been built atop LSM-tree stores, such as range queries or snapshots.
WiscKey instead targets a feature-rich key-value store that can be used in various
situations.

Much work has gone into optimizing the original LSM-tree key-value store [ONeil
et al. 1996]. bLSM [Sears and Ramakrishnan 2012] presents a new merge scheduler
to bound write latency, thus maintaining a steady write throughput, and also uses
Bloom filters to improve performance. VT-tree [Shetty et al. 2013] avoids sorting any
previously sorted key-value pairs during compaction by using a layer of indirection.
WiscKey instead directly separates values from keys, significantly reducing write am-
plification regardless of the key distribution in the workload. LOCS [Wang et al. 2014]
exposes internal flash channels to the LSM-tree key-value store, which can exploit
the abundant parallelism for a more efficient compaction. Atlas [Lai et al. 2015] is a
distributed key-value store based on ARM processors and erasure coding, and stores
keys and values on different hard drives. WiscKey is a stand-alone key-value store,
where the separation between keys and values is highly optimized for SSD devices to
achieve significant performance gains. LSM-trie [Wu et al. 2015] uses a trie structure
to organize keys and proposes a more efficient compaction based on the trie; however,
this design sacrifices LSM-tree features such as efficient support for range queries.
RocksDB, described previously, still exhibits high write amplification due to its design
being fundamentally similar to LevelDB; RocksDB’s optimizations are orthogonal to
WiscKey’s design.

Walnut [Chen et al. 2012] is a hybrid object store that stores small objects in an LSM-
tree and writes large objects directly to the file system. IndexFS [Ren et al. 2014] stores
its metadata in an LSM-tree with the column-style schema to speed up the throughput
of insertion. Purity [Colgrove et al. 2015] also separates its index from data tuples by
only sorting the index and storing tuples in time order. All three systems use similar
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techniques as WiscKey. However, we solve this problem in a more generic and complete
manner, and optimize both load and lookup performance for SSD devices across a wide
range of workloads.

Key-value stores based on other data structures have also been proposed.
TokuDB [Bender et al. 2007; Buchsbaum et al. 2000] is based on fractal-tree indexes,
which buffer updates in internal nodes; the keys are not sorted, and a large index has to
be maintained in memory for good performance. ForestDB [Ahn et al. 2016] uses a HB+-
trie to efficiently index long keys, improving the performance and reducing the space
overhead of internal nodes. NVMKV [Marmol et al. 2015] is an FTL-aware key-value
store that uses native FTL capabilities, such as sparse addressing, and transactional
supports. Vector interfaces that group multiple requests into a single operation are also
proposed for key-value stores [Vasudevan et al. 2012]. Since these key-value stores are
based on different data structures, they each have different tradeoffs relating to per-
formance; instead, WiscKey proposes improving the widely used LSM-tree structure.

Many proposed techniques seek to overcome the scalability bottlenecks of in-memory
key-value stores, such as Masstree [Mao et al. 2012], MemC3 [Fan et al. 2013], Mem-
cache [Nishtala et al. 2013], MICA [Lim et al. 2014], and cLSM [Golan-Gueta
et al. 2015]. These techniques may be adapted for WiscKey to further improve its
performance.

6. CONCLUSIONS

Key-value stores have become a fundamental building block in data-intensive applica-
tions. In this article, we propose WiscKey, a novel LSM-tree-based key-value store that
separates keys and values to minimize write and read amplification. The data layout
and I/O patterns of WiscKey are highly optimized for SSD devices. Our results show
that WiscKey can significantly improve performance for most workloads.

We believe there are many avenues for future work. For example, in WiscKey, garbage
collection is done by a single background thread. The thread reads a chunk of key-value
pairs from the tail of the vLog file; then, for each key-value pair, it checks the LSM-tree
for validity; finally, the valid key-value pairs are written back to the head of the vLog
file. We can improve garbage collection in two ways. First, lookups in the LSM-tree
are slow since multiple random reads may be required. To speed up this process, we
can use multiple threads to perform the lookup concurrently for different key-value
pairs. Second, we can make garbage collection more effective by maintaining a bitmap
of invalid key-value pairs in the vLog file. When the garbage collection is triggered, it
will first reclaim the chunk with the highest percentage of free space.

Another interesting direction to scale LevelDB or WiscKey is sharding the database.
Many components of LevelDB are single threaded due to a single shared database.
As we discussed before, there is a single memtable to buffer writes in memory. When
the memtable is full, the foreground writes will be stalled until the compaction thread
flushes the memtable to disk. In LevelDB, only a single writer can be allowed to
update the database. The database is protected by a global mutex. The background
compaction thread also needs to grab this mutex when sorting the key-value pairs,
competing with the foreground writes. For a multiple-writer workload, this architecture
can unnecessarily block concurrent writes. One solution is to partition the database
and related memory structures into multiple smaller shards. Each shard’s keys will
not overlap with others. Under this design, writes to different key-value ranges can be
done concurrently to different shards. A random lookup can also be distributed to one
target shard, without searching all shards. This new design may make lookups faster
because of a smaller dataset to search. Our initial work on a prototype implementation
of sharded WiscKey has yielded substantial benefits, and thus is another clear direction
for future work.
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Overall, key-value stores are an increasingly important component in modern scal-
able systems. New techniques to make them deliver higher and more consistent perfor-
mance will thus likely continue to be a focus in the coming years. As new, faster media
supplant SSDs, it is likely that even further software innovation will be required.
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